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LElTER TO THE EDITOR 

Lax pair, hidden symmetries, and infinite sequences of 
conserved currents for self-dual Yang-Mills fields 

C J Papachristout 
DepaRment o f  Physics, Naval Academy of Greece, Piraeus 18503, Greece 

Received 17 May 1991 

Abstract. A Lax pair which linearizes the self-dual Yang-Mills (SDYM) equation is found 
and shown to be intimately related to the general symmetry problem far SDYM. The linear 
system is used to derive an invertible recursion operator that produces new infinite sequences 
of non-local symmetries and associated conservation laws for SDYM. 

The integrability properties of the self-dual Yang-Mills (SDYM) equation have been a 
subject of extensive study over the past fifteen years. As is well known, this nonlinear 
equation, when properly formulated, displays many of the typical characteristics of 
an 'integrable' system, such as  parametric Backlund transformations [ 1-41, infinite 
sequences of conservation laws, both non-local [5-71 and local [8], linear system (Lax 
pair) [9 ,  10, 61, PainlevC property [ l l ,  121, etc. In  particular, the Lax pair was shown 
to be related both to the presence of a Kac-Moody 'hidden' symmetry [13-15] and to 
the existence of an infiite number of non-local conserved currents [lo]. 

This letter makes the observation that the SDYM equation can be linearized in more 
than one way. We propose a new Lax pair for SDYM which allows the relationship 
between the symmetry and integrability aspects of this equation to become most 
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produces new infinite sequences of non-local symmetries and associated conservation 
laws for SDYM. The previously mentioned Kac-Moody symmetry appears naturally as 
a subsymmetry generated by purely internal transformations. 

We write the SDYM in gauge-invariant form [16, 17, 61: 

F ( J )  = Dj(J-'J,)+D,(J- 'J , )  = O  ( 1 )  

(where we use the notation Jy = D,J = J J / J Y ,  etc, for partial derivatives). The variables 
y, z, f, Z are constructed from the coordinates of an underlying complexified Euclidean 
space in such a way that f and 2 become the complex conjugates of y and 2. respectively, 
when the above space is real. The variable J is, in general, an N-dimensional complex, 
non-singular matrix. For real SU( N )  gauge theory, J is required to be a Hermitian 

Let J ' =  J + a Q ( J )  be an infinitesimal symmetry transformation, i.e. one which 
leaves equation ( 1 )  invariant. Here Q ( J )  is a functional which may be local or non-local 
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in 3, while a is an infinitesimal parameter. 'The symmetry condition in order that 
F(J ' )  = 0, whenever F ( J )  = 0, is 

(2) 

One often says that the functional Q(J)  is a symmetry cboructeristic for ( 1 ) .  
Equation ( 2 )  has been solved for the particularly simple case of point symmetries 

by using isovector techniques [ 2 , 3 ] .  Moreover, the internal symmetry: Q ( J )  = JM, 
where M is a constant matrix, serves as a hasis for constructing the Kac-Moody 
'hidden' symmetry of SDYM [13-15] .  We will'presently extend the invariance group 
by adding infinite sequences of symmetries associated with coordinate transformations. 
To begin with, we propose the following linearization of SDYM. 

Proposition 1. Consider the pair of linear equations for I): 

D j ( J - ' [ Q ( J ) J - ' l , J l  + D z I J - ' [ Q ( J ) J - l l , J J  = 0. 

J ( J - l $ ) f = A ( $ J - ' ) y J  J ( J - ' $ ) F  = -A($J.r'),J (3) 
where A is a complex parameter and J is a matrix function. This system is integrable 
for $ if J is a solution of (1): F ( J )  = 0. Moreover, if $ ( J ;  A )  is a solution of the linear 
system (3), for some SDYM field J, then $ is a symmetry characteristic, i.e. satisfies (2). 

Proof: The integrability condition ( J - ' $ ) 2 j  = ( J - ' $ ) j 2  yields 

D p [ J - ' ( $ J - ' ) , J l  + D J J - ' ( $ J - ' ) , J ]  = 0. (4) 

The integrability condition (rY. =$zy  yields (after a lengthy calculation, and by using 
(4)): 

[J - '$ ,  F ( J ) ] = O .  

For this to be satisfied independently of $, one must have F ( J )  =O.  A comparison of 
(4) and (2) then implies that $ ( J ;  A )  is a symmetry characteristic of (1). 

Thus, equations (3) constitute a Lax pair for SDYM, the solution $ of which pair 
is a symmetry generator. It is natural to seek an explicit construction of $ for given J 
and A. To this end, we try a Laurent expansion in powers of the parameter A: 

tm 

$ ( J ;  A )  = 1 A"Q'"'(J). ( 5 )  
n=-m 

Substituting this into equations (3), and equating the coefficients of A"+', we obtain 
the pair of equations: 

J[J-'Q'"+''l i  = [Q'"'J-'] ,J JIJ- lQ'"+l '  = - [Q'"'J- ' ]J .  ( 6 )  

The consistency of these relations requires that both Q'"' and Q'""' satisfy ( 2 ) .  
Technically speaking, equations (6) are a strong Backlund transformation for the 
symmetry condition (2) of SDYM, for a given solution J of ( I ) .  Equations (6) may be 
rewritten in the form of an invertible non-local recursion operator: 

Q'""'= JD;'{J- ' [Q'")J-~] ,  J) Q'""'= -DT'IJ"-'O'"'IiJ"}J, (7) 
Starting with a known symmetry Q'''(J) of SDVM (say, a local symmetry), one may 
construct an infinite sequence of symmetries Q ' " ' ( J )  (where n = *I,  i 2 , * 3 , .  . . , i 00 )  

simply by employing the recursion relations (7). At the same time, the solution ( 5 )  of 
the Lax pair is formally represented as an infinite sum of symmetry characteristics of 
SDVM. 



Letter to the Editor L1053 

If the original (untransformed) solution J satisfies det I= 1 and It= J in real space, 
the conditions in order that a symmetry Q ( J )  preserve these properties of I, are 
tr(I-'Q) = O  and Q'= Q in real space (where the dagger denotes Hermitian conjuga- 
tion). Let Q'"' be a characteristic with these properties. In general, neither Q'""' nor 
Q"-", as given by equations (7), will be Hermitian. To take care of this problem, we 
use the fact that the symmetry condition (2) is linear in Q ( J ) ,  hence the difference of 
two solutions is again a solution (for the same I). Thus we consider the following 
recursion relation in place of those of equations ( 7 ) :  

(8) 

It is readily verified that this operator preserves the required properties of 0'"' for 
Hermitian SL(N, C) SDYM solutions. 

The recursion operator does more than produce new symmetries. Returning to the 
symmetry condition (2) we observe that it has the form of a continuity equation which 
is satisfied for all symmetry characteristics @"'(I ) :  

Q'""' = JD;'(J-'[ Q'"'J-'],I] + D;'(J[J- '  Q'"'IjJ-')J. 

D,(J-'[Q'"'(I)I-'l,Il+ D,{I- ' [Q'"'(I)I- ' l , I )  = 0. (9) 

We thus obtain an infinite sequence of non-local conservation laws for SDYM, corre- 
sponding to the infinite sequence of non-local characteristics Q'"'(J) .  We note that 
the conserved 'charges' are linearly dependent upon symmetry characteristics. This 
feature is new, not present in older conservation laws for SDYM [ 5 , 7 ] ,  and may suggest 
that these currents are associated with some underlying Noether structure. 

We now study the relationship of our Lax pair (3) to the one known previously 
[6, 9, 101 for SDYM: 

Xi= A(Xy + J - ' I , X )  X,= - A ( X z + I - ' I z X ) .  (10) 

We have found a simple algebraic' relation which allows one to construct solutions * 
of (3) from solutions X of (10) (but not vice versa) for the same I: 

Proposifion 2. Let X ( J ;  A) be a solution of equations (10). for a given SDYM solution 
J. Consider the function # ( I ;  A )  defined by 

J, = J X T X - ~  (11) 

T = f ( y + A i ,  z - A j ,  A )  (12) 

where 

is an arbitrary function of the indicated variables. Then, J, is a solution of equations (3). 

ProoJ We first note that, according to (121, T satisfies the relations & = A T , .  and 
T,= -AT,. Putting 4 = X T X - ' ,  and using equations (lo), we find that 4 satisfies the 
pair of equations 

&=A(4y+[J-'Jy,  +I)  4.0 = - A ( + ,  + [ J - ' J z ,  41). 
By substituting 4 = I - '@,  we recover the linear system (3) for J,. 

Thus, ( I t )  and (12) constitute a weak, non-auto-Backlund transformation which 
produces solutions of the Lax pair (3) from solutions of the Lax pair (10) (this does 
nof imply, however, that a / /  solutions of (3) may be obtained in this way). This 
transformation is of practical value when seeking solutions of (3). considering the fact 
that several solutions of (10) are known (see, for example, [9] and [lo] for results 
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related to the multi-instanton solution). Special solutions JI of the Lax pair (3)  are 
important since, as we have seen, they yield new hidden symmetries and conservation 
laws for SDYM. 

In concluding this letter, we give examples of new symmetries by constructing a 
few of them explicitly. The conditions det J = 1 and J' = J will be assumed throughout. 

(1) First, we remark that the known symmetries can be recovered by using our 
symmetry-generating process. Let us start with the internal symmetry Q'O'(J)  = 
J M  + M'J, where M is a constant, traceless matrix. Application of the recursion 
operator (8) yields, after a straightforward calculation 

Q"'(J)  = J [ P ,  M I  + [ M I ,  P ] J  

where P and P are potentials for the SDYM equation, defined by J-'J, = P i ,  J- 'J ,  = -PF 
and JpJ-' = pz, J J '  = -py (note that, by the conditions imposed on J, the P and p 
are traceless and Hermitian-conjugately related in real space). 

Repeated application of the recursion operator, and expansion of the matrix M in 
the basis of SI(  N, C ) ,  yield an infinite set of infinitesimal transformations which 
constitute the familiar Kac-Moody symmetry of SDYM [13-151. In the literature [I31 
this symmetry was found by exploiting the infinitesimal transformation 6J = - J X M X - ' ,  
where X is a solution of system (IO) and M is an infinitesimal constant matrix. (The 
connection of the aforementioned transformation with (11) is evident.) 

(2) Let us start with the translational symmetry [3] Q " ' ( J ) = J Y + J p  (note that 
tr(J-'J,) = 0, etc). Application of the recursion operator (8) yields 

Q"'(J)  = J(P,+  PJ+  (FY+ &)J 

and so forth. We thus obtain an infinite sequence of new non-local symmetries and 
conservation laws; the latter are found by direct substitution of the 0'"' into (9). 

(3) The dilational symmetry Q'"'= yJy + zJ, + j J F +  ZJ? yields 

Q"' = J(YP,  + ZP, + jp9  + ZPJ + (yFy + zP, +j@, + ~ P & J  
and so forth. 

We work similarly for the remaining coordinate symmetries [2,3]; i.e., the transla- 
tional symmetry Q"'= J z + J z ,  and the'rotational'symmetry Q ' o ' = z J y - y J , + Z J F - ~ J z .  

In summary, we have proposed a linearization of SDYM which makes the connection 
between symmetry and integrability most transparent. The Lax pair was used to 
construct an invertible recursion operator which, in turn, produced new hidden non- 
local symmetries and conservation laws. We have discussed possible representations 
for solutions of the Lax pair, either as infinite sums of symmetry characteristics, or as 
images, under a weak Backlund map, or solutions of the Belavin-Zakharov-PohImeyer- 
Chau linear system. The aforementioned map, being non-surjective, does not yield the 
general solution of the Lax pair; this probably explains why the older linear system 
fails to produce the complete symmetry group of SDYM, in contrast to the new one. 
The solution-generating aspects of the latter system will be explored in future publica- 
tions. 
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